Συνολικές προβολές σελίδας

Δευτέρα 24 Μαΐου 2010

ΠΩΣ ΝΑ ΜΕΤΡΗΣΕΤΕ ΤΟ ΥΨΟΣ ΕΝΟΣ ΟΥΡΑΝΟΞΥΣΤΗ ΜΕ ΕΝΑ ΒΑΡΟΜΕΤΡΟ

Το κείμενο που ακολουθεί αφορά μια ερώτηση που ήταν θέμα σε εξετάσεις Φυσικής στο Πανεπιστήμιο της Κοπεγχάγης:



«Να περιγράψετε πώς μπορούμε να μετρήσουμε το ύψος ενός ουρανοξύστη χρησιμοποιώντας ένα βαρόμετρο».



Ένας φοιτητής απάντησε:



«Δένετε ένα μακρύ σπάγκο στο λαιμό του βαρόμετρου και στη συνέχεια κατεβάζετε το βαρόμετρο από την ταράτσα μέχρι να αγγίζει το έδαφος. Το ύψος του κτιρίου θα ισούται με το μήκος του νήματος συν το μήκος του βαρόμετρου».



Αυτή η πρωτότυπη απάντηση εξόργισε τόσο τον εξεταστή, ώστε αυτός έκοψε το φοιτητή στο συγκεκριμένο μάθημα. Ο φοιτητής προσέφυγε στις αρχές του Πανεπιστημίου, ισχυριζόμενος ότι η απάντησή του ήταν αναμφίβολα σωστή και ότι αδίκως κόπηκε.



Το Πανεπιστήμιο όρισε έναν άλλο εξεταστή να διερευνήσει το θέμα και να αποφασίσει εάν έπρεπε να κοπεί ο φοιτητής ή όχι. Ο κριτής αυτός θεώρησε ότι η απάντηση που δόθηκε ήταν πράγματι σωστή, αλλά δεν φανέρωνε καμία αξιοσημείωτη γνώση Φυσικής.



Για να διαλευκανθεί τελείως το θέμα, αποφασίστηκε να καλέσουν το φοιτητή και να του αφήσουν έξι λεπτά, μέσα στα οποία αυτός θα έπρεπε να δώσει μια προφορική απάντηση που να μην είναι τόσο απλοϊκή, αλλά να δείχνει κάποια εξοικείωση με τις βασικές αρχές της Φυσικής.



Για πέντε λεπτά ο φοιτητής έμενε σιωπηλός, βαθιά απορροφημένος στις σκέψεις του. Ο εξεταστής του θύμισε ότι ο χρόνος τελειώνει και ο φοιτητής απάντησε ότι είχε στο μυαλό του μερικές ιδιαίτερα σχετικές απαντήσεις, αλλά δε μπορούσε να αποφασίσει ποια να χρησιμοποιήσει. Στην προτροπή να βιαστεί, απάντησε ως εξής:



«Κατ’ αρχήν, θα μπορούσαμε να ανεβάσουμε το βαρόμετρο στην ταράτσα του ουρανοξύστη, να το αφήσουμε να πέσει και να μετρήσουμε το χρόνο που κάνει μέχρι να φτάσει στο έδαφος. Το ύψος του κτιρίου μπορεί να υπολογιστεί τότε από τον τύπο: H=(gt 2)/2. Όμως, δε θα το συνιστούσα γιατί θα ήταν κρίμα για το βαρόμετρο».



«Μια άλλη εναλλακτική απάντηση» είπε ο φοιτητής «είναι η εξής: Εάν υπάρχει ηλιοφάνεια, θα μπορούσαμε να μετρήσουμε το ύψος του βαρόμετρου, να το στήσουμε όρθιο στο έδαφος και μετά να μετρήσουμε του μήκος της σκιάς του. Στη συνέχεια μετρούμε το μήκος της σκιάς του ουρανοξύστη, και με απλό τρόπο μπορούμε να υπολογίσουμε το πραγματικό ύψος του ουρανοξύστη με αριθμητική αναλογία».



«Αλλά, εάν θα θέλατε να αντιμετωπίσετε το θέμα με ιδιαίτερα επιστημονικό τρόπο, θα μπορούσατε να δέσετε ένα μικρού μήκους νήμα στο βαρόμετρο και να το θέσετε σε ταλάντωση σαν εκκρεμές, πρώτα στο έδαφος και μετά στην ταράτσα του ουρανοξύστη. Το ύψος θα μπορούσε να βρεθεί μετρώντας και συγκρίνοντας τις δύο περιόδους, οι οποίες είναι αντιστρόφως ανάλογες των τετραγωνικών ριζών των επιταχύνσεων της βαρύτητας στο έδαφος και στο ύψος του ουρανοξύστη. Η επιτάχυνση της βαρύτητας εξαρτάται με τη σειρά της από το ύψος από την επιφάνεια της γης και συνεπώς γνωρίζοντας την επιτάχυνση της βαρύτητας στην ταράτσα βρίσκουμε το ζητούμενο ύψος».



«Α!» είπε πάλι ο φοιτητής, «Υπάρχει κι ένας άλλος τρόπος, όχι κακός: Αν ο ουρανοξύστης διαθέτει εξωτερική σκάλα κινδύνου, θα ήταν ευκολότερο να ανεβεί κανείς τη σκάλα βάζοντας διαδοχικά σημάδια επαναλαμβάνοντας το μήκος του βαρόμετρου. Μετά θα ήταν εύκολο να υπολογίσει το ύψος του ουρανοξύστη προσθέτοντας όλα αυτά τα μήκη. Αλλά, αν απλώς θα θέλατε να είστε ιδιαίτερα βαρετός δίνοντας μια ορθόδοξη απάντηση, θα μπορούσατε να μετρήσετε την ατμοσφαιρική πίεση στην ταράτσα και στο έδαφος και να μετατρέψετε τη διαφορά των millibars σε ανάλογη διαφορά σε μέτρα.»



«Όμως, επειδή ως φοιτητές παροτρυνόμαστε συνέχεια να ασκούμε την ανεξαρτησία του μυαλού μας και να εφαρμόζουμε επιστημονικές μεθόδους, αναμφίβολα ο καλύτερος τρόπος θα ήταν να χτυπήσουμε την πόρτα του θυρωρού και να του πούμε: Αν θα ήθελες να έχεις ένα ωραίο καινούριο βαρόμετρο, θα σου χαρίσω αυτό αν μου πεις το ύψος του ουρανοξύστη».



Ο φοιτητής ήταν ο Niels Bohr, ο μόνος Δανός που τιμήθηκε με το βραβείο Νόμπελ Φυσικής…


Κυριακή 23 Μαΐου 2010

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ

1) Στην διαταξη του σχηματος η ραβδος εχει μαζα M =4Kg  μηκος L=4 m και ισορροπει με την επιδραση δυναμης F =160Ν και του νηματος.Στο ακρο του νηματος βρισκεται σωμα μαζας  m =1Kg το οποιο ειναι αναρτημενο απο ελατηριο σταθερας Κ=100Ν/m .Το σωμα   ισορροπει και αυτο με το ελατηριο σε κατακορυφη θεση ενω η ραβδος μπορει να στρεφεται ως προς αξονα που διερχεται απο το Ο καθετο στο επιπεδο της σελιδας.
α)Να βρεθει η ταση του νηματος.
β)Για t =0  κοβουμε το νημα.Το σωμα m εκτελει αατ ενω η ραβδος αρχιζει να περιστρεφεται .Να βρεθει η ροπη αδρανειας της ραβδου ως προς τον αξονα περιστροφης της
γ)Να βρεθει το πλατος ταλαντωσης του σωματος
δ)Αν η δυναμη F εξακολουθει να δρα στην ραβδο παραμενοντας  διαρκως καθετη σε αυτη, ποια η κινητικη ενεργεια της ραβδου στην κατακορυφη θεση.


Η αποσταση του αξονα περιστροφης απο το σημειο εφαρμογης της δυναμης ειναι L/4.

Κυριακή 16 Μαΐου 2010

3)  H πηγη Π εκτελει κατακορυφη ταλαντωση με εξισωση ψ = 0.02ημ(4πt)  (SI) και παραγει αρμονικα κυματα που διαδιδονται στην επιφανεια του υγρου με ταχυτητα  υ = 2 m/s  .Τα κυματα φθανουν στο σημειο Σ ειται απευθειας , ειτε μετα απο ανακλαση στον ανακλαστηρα που βρισκεται στην μεσοκαθετο του ΠΣ οπως στο σχημα.
α) Ποτε το σημειο Σ ξεκινα ταλαντωση και ποτε στο Σ εχουμε φαινομενο συμβολης
β) Να βρεθει το πλατος ταλαντωσης του σημειου Σ μετα την συμβολη
γ) Γραψτε την εξισωση ψ-t που περιγραφει συνολικα την κινηση του σημειου Σ
δ) Να βρεθει η ελαχιστη αποσταση του ανακλαστηρα απο το μεσο του ΠΣ ωστε το σημειο Σ να εμφανιζει αποσβεση.
Δινεται ΠΣ=6m καθως  και η αρχικη αποσταση του ανακλαστηρα απο το μεσο του ΠΣ ιση με 4m
4) H ραβδος ΑΒ εχει μηκος (ΑΒ)=2m  και μαζα m =3 kg   .Στο ακρο της  Β ειναι αναρτημενο κατακορυφο ελατηριο σταθερας Κ=100Ν/m  με σωμα m  =1kg   .Ολη η διαταξη ισορροπει σε κατακορυφο επιπεδο.
α) Υπολογιστε την ταση του νηματος καθως και την δυναμη που δεχεται η ραβδος απο την αρθρωση.
β)Για  t=0 δινουμε στο σωμα  ταχυτητα μετρου u  =1 m/s   με φορα προς τα κατω. Γραξτε την εξισωση χ- t  που περιγραφει την ταλαντωση του σωματος.
γ)Να εκφρασετε την δυναμη του ελατηριου σαν συναρτηση του χρονου.
δ)Εξεταστε αν κατα την διαρκεια της ταλαντωσης το νημα κοβεται.Δινεται η ταση θραυσεως του νηματος Τ=280Ν





                                      Δ Ι Α Γ Ω Ν Ι Σ Μ Α   Σ Τ Ι Σ   Τ Α Λ Α Ν Τ Ω Σ Ε Ι Σ